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Abstract

Bottleneck-centered, opportunistic scheduling is an effective problem solving paradigm based on
a fundamental Analyze-Focus-Decide cycle. Opportunistic schedulers have shown better overall
performance than other scheduling systems adopting different paradigms. However, in order to
make more significant progress, we need to better understand how the different phases of the
opportunistic cycle interact during problem solving. This paper reports an extensive analysis of a
specific embodiment of the opportunistic scheduling paradigm, the Conflict Partition Scheduling
procedure. By analyzing the role of each phase of CPS, proposing variations and anticipating
expected effects on the performance of the algorithm, we aim to develop a better understanding
of the importance of the different phases and of their interactions. The hypotheses on the
performance of CPS are then verified in an experimental analysis. The results of this study
provide hard evidence that supports the fundamental assumptions made by opportunistic
scheduling.
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1 Introduction

Bottleneck-centered, opportunistic scheduling is a problem solving paradigm that addresses a
scheduling problem’s specific sources of complexity. When compared with other systems,
schedulers that follow this paradigm have shown superior performances [1] [11] [10]). However
comparing the global performance of one scheduler against another can only show that the
combination of techniques assembled in one system is superior to those assembled in another.
The questions that remain open are: (1) what the importance of each technique is; (2) how the
different techniques interact to carry out the computation. Answers to these questions are crucial
if we are to understand the principles behind the functioning of a scheduling system. This
understanding is essential in order to guide the design of better schedulers.

This paper reports an empirical study on Conflict Partition Scheduling (CPS)[9][10], a
scheduling methodology that implements the opportunistic scheduling paradigm. Previous
research [10], which involved comparisons on a suite of benchmark scheduling problems, has
shown that CPS performs better than other state of the art schedulers [11] [7]. In this paper we
take a more in-depth look at each step of the methodology. First we analyze the role of each step
of CPS. Then we discuss modifications of each step and make hypotheses on their effects on the
performance of the algorithm. These hypotheses are based on our qualitative understanding of
the importance of the different phases and of their interactions. Finally, we verify the qualitative
hypotheses against the results of an empirical analysis. Each step of CPS has a nature similar to
that of corresponding steps in other opportunistic schedulers; also, the performance hypotheses
are applicable to comparable modifications in other scheduling algorithms. As a consequence,
we believe that the results of this empirical study can be applied to other opportunistic schedulers
and can therefore provide the basis for a better understanding of the entire class of opportunistic
schedulers beyond CPS.

CPS is one possible implementation of the opportunistic scheduling paradigm. When given a
network of activities and the set of resources needed to carry out the activities, an opportunistic
scheduler builds a schedule (i.e., an assignment of time and resources to each activity that avoid
resource cver-subscription) by repeatedly applying the following basic opportunistic scheduling
cycle:

1. Analyze: analyze the current problem solving state;

2.Foor  select one or more activities that are expected to participate in a critical
interaction among problem constraints;

3. Decide: add constraints to avoid negative interactions among critical activities.

Although opportunistic schedulers differ on the specific techniques used to implement each step

[12}[2] [11][1], some fundamental characteristics are common across all of them. In all
schedulers, for example, the Analyze step consists of building estimates of demand/supply ratios
for the different resources and/or activities. These estimates, or capacity analyses, are usually
conducted on relaxed versions of the problem obtained by dropping some of its original
constraints. During the Focus step, opportunistic schedulers use bottlenecks as the primary
means to indicate and select critical interactions. While the exact definition of a bottleneck varies
among different opportunistic schedulers, all agree on relating this concept to a resource and
time interval with a high demand/supply ratio. Critical activities are usually defined as those that
are likely to request the use of a bottleneck. The constraints posted during the Decide phase
allow the arbitration among conflicting capacity and time requests. This is the phase where
opportunistic schedulers differ the most, with respect to the type of constraint posted (assigning a
value to a variable versus imposing a precedence among activities) and to the granularity of the
decision making process (the number of decision taken at each cycle).

The techniques used in each step of the opportunistic cycle follow guidelines widely accepted in




the practice of scheduling applications (e.g., manufacturing scheduling). However, these
guidelines have not so far been validated by hard evidence of their effectiveness. Although it
would be most desirable to validate these guidelines with respect to a a formal model, at present
no model can realistically capture the deep structure of scheduling problems. In its absence, hard
evidence of performance can be gathered with empirical studies. This experience is also
necessary to guide the search for an appropriate formal model.

Previous empirical studies have analyzed the impact of different granularities of the Decide
phase [11]. In this paper we consider all the steps of the opportunistic cycle. In particular, we
answer the following performance questions:

1. In the Analyze phase, what is the effect of using different constrain: relaxation
assumptions?

2. In the Focus phase, how important is it to focus problem solving on bottleneck
areas?

3. In the Decide phase, what is the best decision making granularity?

The study suggests the following conclusions:

1.1t is important to analyze capacity by considering as many currently known
constraints as possible;

2. Bettleneck focusing plays a central role in scheduling;

3. To achieve acceptable overall performance, it is important to take as many
scheduling decisions as possible on the basis of a single analysis step.

In the rest of the paper we first describe the basic structure of the CPS procedure (section 2).
Then we describe the details of each phase of CPS and make hypotheses regarding their effect on
the performance of the procedure (sections 3, 4, and 5). In these sections we also identify
variations to the steps that, once empirically tested, can confirm or negate the performance
hypotheses. Section 6 reports the results of the experimental analysis and section 7 concludes
the paper.

2 Conflict Pariition Scheduling

Perhaps the main characteristic that sets CPS apart from all other opportunistic schedulers is the
search space that it explores. Other schedulers follow a value commitment approach, ie.,
proceed by assigning precise values to the start and end time of each activity.” Instead, CPS
adopts a constraint posting approach, i.e., it operates by posting temporal precedences among
activities (activity a; must follow activity a). During problem solving each activity has an

associated window of opportunity for its execution; this can be deduced by propagation
[3] across the activity network, the network activities and precedence constraints. At any point
during problem solving, CPS leaves open a greater number of possible start and end time for
each activity compared to a value commitment scheduler; this suggests a lower risk of the
scheduler "getting lost” in blind alleys. Previous empirical studies have shown that CPS does
perform better than other value commitment approaches [9] [10].

The outline of the basic CPS procedure is the following:

*Although CPS can deal with activities with flexible durations (i.e., the duration of o must fall in the range
[dg, D)) to simplify the presentation we will only consider activities with fixed durations
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1. Capacity Analysis: estimate activity demand and resource contention.

2. Termination Test: If the resource contention for each resource is zero over the
entire scheduling horizon, then exit. The current activity network is the solution.

3. Bottleneck Detection: Identify the resource and time with the highest contention;

4. Conflict Identification: Select the activities that are most likely to contribute to
the bottleneck contention.

5. Conflict Arbitration: Sort the set of conflicting activities according to the activity
demand, by inserting appropriate precedence constraints.

6. Constraint Propagation: Update the time bounds for the execution of each
activity as a consequence of the introduction of the new precedence constraints.

7. Consistency Test: If the activity network is inconsistent, signal an inconsistency
and exit.

8. Gotol.

The basic CPS procedure is strictly monotonic. If it generates an inconsistency, CPS backtracks
by resetting the activity network to the initial state and restarting the proceduie. As we will see
later, CPS’s capacity analysis is stochastic in nature; therefore, each repetition explores a
different path in the problem solving space and can possibly lead to success. If a solution has not
been found after a fixed number of repetitions (usually 10), CPS terminates with an overall
failure.

In relation to the basic opportunistic cycle described in section 1, step 1 corresponds to Analyze,
steps 3 and 4 to Focus, and step S to Decide. We will now discuss each step separately and
analyze its impact on overall performance.

3 Capacity Analysis

In opportunistic scheduling, the goal of the Analyze phase is tc generate an estimate of the
structure of the remaining search space without engaging in detailed problem solving. The
resulting problem space metrics give an indication of (1) the location of the critical constraints,
those that are most likely to endanger the problem solving process, and (2) the level of
preference on open alternatives, showing which decisions are most likely to yield successful
problem solving.

The problem space metrics gathered by CPS’s capacity analysis are statistics on a set of
complete value assignments for the start and end times of all the activities in the network.
Generating a complete value assignment correspond to making a specific assumption on when
each activity will be in execution. A complete value assiguuucnt is a consistent schedule only if it
satisfies all the precedence and capacity constraints of the problem. An appropriate stochastic
simulation process generates each complete value assignment. The process used by CPS differs
from other stochastic simulation techniques [4, 5] that estimatc the possible outcomes of
executing a detailed schedule in an uncertain environment. Having to insure executability, these
simulations must introduce additional constraints to complete an intermediate problem solving
state into a consistent schedule. Therefore, they end up considering many more details than are
useful or necessary for an aggregate capacity analysis. Instead, CPS’s stochastic simulation
[8] considers only the constraints that are explicit in the current intermediate state, with very
weak assumptions on how this is going to be completed into a complete schedule.

The steps of CPS’s stochastic simulation are the following. Initially a temporal constraint




propagation 3] establishes the range of possible values for the start time of each activity in the
network. At each simulation step i an activity @, is selected from the network. Then, a value is
chosen randomly within the range of possible start times, and is assigned to the start time of o;.
The random choice follows a given prebubility distribution, or selection rule; possible selection
rules include the uniform distributio.. ..e., all currently available times have equal weight) and
the linearly biased distribution ¢+ ., the weight of the currently available times increases or
decreases linearly over the tiine bound). The consequences of the start time assignment are
propagated through the retwork to restrict the range of other activities’ start times. Then o is
extracted from the neiwork and the cycle is repeated until all the activities of the network have
been assigned 2 stast time. Figure 1 illustrates a step of a stochastic simulation that uses a linear
selection rule.

*iﬂ .E E *i&l
- -
time time
(a) (b)

Figure 1: Simulation step: (a) before step i; (b) after step i

In the following EST(a) and LFT (o) will denote, respectively, the earliest start time and the
latest finish time of the activity o, / will denote the overall scheduling horizon, and R wiil be the
set of resources.

If the stochastic simulation is repeated N times, we will obtain a sample of N complete value
assignments. This sample is then used to estimate the the following two problem space metrics:

e activity demand: for each activity o and for each time EST(x)<t; <LFT(),
activity demand A(a, ¢;) is equal to n, /N, where n,_is the number of complete value
! [

assignments in the sample for which the activity is in execution at time ;.

e resource contention: fr - each resource p € R and for each time L € H, resource
contention X (p, ) is equal to n, /N, where n, is the number of complete value

assignments in the sample for which p is requested by more than onc activity at time

L.
Activity demand and resource contention represent two different aspects of the current problem
solving state. Activity demand 1s a measure of preference; it indicates how much the current
constraints bias an activity toward being executed at a given time. Resource contention is a
measure of potential inconsistency; it indicates how likely it is that the current constraints will
generate capacity request congestion on a resource at a given time.

In the capacity analysis procedure that we have just described, activity demand and resource
contention are computed on the basis of the same N sample. Moreover the stochastic simulation
uses all the constraints currently in the network, since at each cycle it propagates the effects of a
start time assignment throughout the network. However, we can generalize this capacity analysis
by allowing (1) to use different samples to compute different statistics and (2) to generate a
sample considering a less constraints than those present in the current problem solving state. In
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fact, it is possible to use simplified simulations that drop some or all of the activity precedence
constraints during the start time selection process. Micro-opportunistic scheduling [11] follows
this approach. Resource contentinn is based on the assumption that the range of possible start
times for each activity has a subjective probability of being executed. Each subjective probability
is computed independently. If we assume a stochastic simulation semantics, this is equivalent to
dropping all the precedence constraints during the iterative start time selection. Conversely,
micro-opportunistic scheduling uses an activity demand measure that is based on a complete
enumeration of all possibie start timie assignments consistent with all the constraints in the
current activity network. Again assuming a stochastic simulation semantics, this is equivalent to
considering all the precedence constraints during the iterative start time selection. Since micro-
opportunistic scheduling makes some additional simplificatbon assumption and uses value
commitment to make scheduling decisions, resource contention and activity demand can be
computed deterministically by a fast, complete enumeration of all the possible value
assignments.

In general, the less that constraints are considered in the simulation, the faster capacity analysis
is going to be. However, speed has a potential cost. The higher the number of dropped
constraints, the higher the percentage of complete value assignments that will potentially violate
already imposed precedence constraints. Therefore, when we drop constraints we increase the
distance between the space of complete value assignments used by the capacity analysis and the
original search space. This makes the problem space metrics less reliable and can negatively
affect the scheduling process.

The previous discussion leads to the first question on the performancc of an opportunistic
scheduling procedure:

e In the Analyze phase, what is the effect of using different constraint relaxation
assumptions?

To answer this question, we tested two different configurations of CPS’s capacity analysis:

e complete (COMP): this is the original capacity analysis of CPS. Both activity
demand and resource contention are evaluated with respect all the constraints in the
current activity network.

e simplified (SIMP): only activity demand uses the complete network, while resource
contention is computed as in [11], by dropping all precedence constraints in the
current activity network. Both simulations use the same type of stochastic start time
selection rule.

4 Bottleneck Detection

A widely accepted principle in problem solving is to focus on the most tightly interacting
variables at each step, i.e., those with the lowest flexibility on the set of possible valves. For
example, in constraint satisfaction search [6] the "most constrained first" heuristic minimizes the
expected length of any path in the search tree and therefore increases the probability of achieving
a solution in less time. In opportunistic scheduling this principle translates into looking for
bottleneck resources, i.e., resources that have a high ratio between some measure of aggregate
demand and some measure of aggregate capacity. The precise definition of bottleneck given by
each scheduling system depends on the specific nature of its problem space metrics.

In the case of CPS, each problem solving cycle focuses on a set of activities that are potentially
in conflict, also called the conflict set; more precisely, a conflict set is a set of activities that
request the same resource, have overlapping execution time bounds, and are not necessarily
sequential, according to the precedence constraints of the current acuivity network. To detect a




conflict set, CPS first identifies a bottleneck on the basis of the resource contention measures:

e Bottleneck: Given the set of resource contention functions {X(p, ¢)} with pe R and
te H, we call bott'eneck a pair {p,,t,,) such that:

X (ppstp) = max {X(p,n}
for any pe R and te H such that {X(p,t) > 0}.

The conflict set is extracted among the activities with their current time bounds overlapping the
bottleneck time. See [9] for a more detailed description of the procedure.

Although focusing on bottlenecks is widely accepted in opportunistic scheduling, there is little
quantitative evidence of its effectiveness. As we mentioned in section 1, the performance of an
opportunistic scheduler depends on the combination of several techniques and on the use of
several kinds of information. For example, activity demand provide a measure of preference on
the execution times for each activity. Both in micro-opportunistic scheduling and in CPS (as we
will see in section 5) this measure is used to decide how conflicting activities should be sorted.
One could wonder if in fact this preference informatio~ would not be sufficient. If so, the
performance of the scheduler would not change if it focussed on any set of activities, either
associated to a bottleneck or not. If this were true, one could save the additional cost required to
compute resource contention. {n summary, the additional cost of finding bottlenecks is justified
only if there is a return in terms of additional problem solving power.

The previous discussion leads to the second question on the performance of an opportunistic
scheduling procedure:

e In the Focus phase, how important is it to focus problem solving on bottleneck
areas?

To answer this question we considered two different configurations of CPS’s Bottleneck
Identification step:

e maximum contention bottleneck (BTL): the original method used in CPS. The set
of conflicting activities is selected around the bottleneck;

e random (RAND): the resource contention measure is completely disregarded and
the conflict set is selected around a randomly chosen resource and time.

5 Conflict Arbitration

At each Conflict Arbitration step, CPS introduces additional precedence constraints between
pairs of activities. The new constraints restrict the mutual position of activities and their time
bounds. However, unlike in value commitment scheduling time bounds are not completely

collapsed.

An important aspect that characterizes different opportunistic schedulers is the granularity of
decision making. At one end of the spectrum there are sche julers that make the minimum
possible decision at each scheduling cycle; this follows the spirit of micro-opportunistic
scheduling [11]. At the other end of the spectrum there are schedulers that follow a macro-
opportunistic approach [12] [1]. These schedulers make decisions that completely eliminate any
possibility of conflicts among all the activities in the conflict set.

Within CPS it is possible to explore the consequence of different granularities of the scheduling
decision phase. For example, a micro-opportunistic approach translates into adding a single
precedence constraint at each cycle. The corresponding pair of activities is extracted from the
conflict set. Conversely, a macro-opportunistic approach could be implemented by totally



ordering all activities in the conflict set.

The initial implementation of CPS [9] proposes an approach with intermediate granularity. It
consists of partitioning the conflict set into  wo subsets, A, and A 4, and then constraining

every activity in Ay, , to occur before any activity in Agfrer The bi-partition of the original
conflict set relies on a clustering analysis of the activity demands (Figure 2). For details see [9].
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Figure 2: A Conflict Arbitration step

The choice of the appropriate decision granularity requires to evaluate a trade-off. The more
scheduling decisions are made in a step, the quicker the search space will be pruned. A larger
granularity will therefore increase the speed with which the scheduler reaches either a solution or
a failure point. However, the more decisions are made, the greater the change in the topology of
the activity network after the step. The resulting nctwork could in fact be significantly different
than the starting one. Therefore, an analysis done before the step could give little information on
the structure of the destination state. This can increase the likelyhood of failure and consequent
backtracking, and therefore slow down the scheduler. In summary, the important trade-off
involves on one hand the speed of convergence and on the other the number of backtracking
steps needed.

The previous discussion leads to the third question on the performance of an opportunistic
scheduling procedure:

e In the Decide phase, what is the best decision making granularity?

To answer this question we considered two distinct Conflict Arbitration rules:

e conflict bi-partition (BIP): the technique originally used in CPS. The conflict set
is separated into two Ay, and A 5, subsets.

e most separated activities (MS): a micro arbitration technique. It introduces a single
precedence between two activities extracted from the conflict set. To minimize the
impact of sampling noise, we select the two activities whose demand profiles are
maximally separated.

6 Experimental Results

The experimental analysis was conducted on the Constraint Satisfaction Scheduling benchmark
proposed in [11]. The benchmark consists of 6 groups of 10 problems, each with 50 activities, 5
resources, and non-relaxable release and due date constraints. Each set is identified by the two
following parameters that describe its expected difficulty: (1) the spread of the release and due



dates, which can assume the three levels (in order of increasing expected difficulty) wide (w),
narrow (n) and null (0); (2) the number of expected bottleneck resources, either 1 or 2. For more
details see [11].

Tables 1 and 2 report the performance of the configurations of CPS obtained by combining the
alternatives described in the previous sections in every possible way. Each column is marked
with three labels identifying each of the steps in CPS. Table 1 shows the average number of
problems solved over 5 independent runs of the procedure; table 2 reports the corresponding
processing times. The processing times are the average of the weighted number of opportunistic
cycles needed to process a problem in the subset (either finding a solution or failing). The
number of cycles is weighted according to the different complexities of complete (COMP) and
simplified (SIMP) stochastic simulation. More precisely, each SIMP cycle is assumed to take
85.64% of the time needed by a single COMP cycle. The speed-up factor was evaluated on the
current CPS implementation and takes into account known implementation inefficiencies. In
fact, the speed-up factor is optimistic since we considered the time needed to compute the SIMP
resource contention as equal to zero.

<COMP, | <COMP, | <SIMP, | <SIMP, | <SIMP, |<SIMP,
BTL, BTL, BTL, BTL, |RAND, |RAND,
BIP> MS> BIP> MS> BIP> MS>
w/l 10 10 10 10 10 9.4
w/2 10 10 10 10 10 9.2
n/l 10 10 10 10 9.2 8.6
n/2 10 10 10 10 8.2 58
0/1 10 10 9.8 10 8.4 9
072 8.8 10 9 8.4 4.8 4
TOT 58.8 60 58.8 58.4 50.6 46

Table 1: Experimental results: number of problem solved

<COMP, | <COMP,| <SIMP, | <SIMP, | <SIMP, | <SIMP,
BTL, BTL, BTL, BTL, | RAND, | RAND,
BIP> MS> BIP> MS> BIP> MS>

w/l | 45.12 121.78 | 56.16 107.51 59.21 280.14
w2 | 4542 137.62 | 5642 139.18 79.87 487.91
n/1 46.38 129.74 | 5791 11198 | 114.71 403.00
n/2 | 46.58 13496 | 59.18 158.31 139.23 815.89
0/1 48.16 14730 | 57.46 118.58 | 112.10 380.99
0/2 | 64.10 15348 | 79.73 270.74 | 213.29 927.21

AVG| 49.29 13748 | 61.14 151.05 151.05 1 549.19

Table 2: Experimental results: processing time

Both demand and contention measures were computed from samples of N = 10 complete value
assignments. The stochastic simulation had the following configuration. At each simulation
cycle the selected activity was one among those with no predecessor activities with unassigned




stait times (forward temporal dispatching). The start time value was selected according to a
linearly biased probabilistic selection rule. The rule gave the highest preference to the earliest
time and the lowest (0) preference to the latest time. See [9] for details.

We will now answer each of the three performance questions on the basis of the results of the
empirical analysis.

6.1 Analysis: Effects of different constraint relaxation assumptions

Let us compare each entry in a <COMP, BTL, ?x> with the corresponding entry in the <SIMP,
BTL, ?x> column. We can see a slight advantage for COMP with respect to SIMP(overall
average of 59.4 problems solved against 58.6). The advantage is more definite when comparing
processing times; on average, a SIMP configuration is 16.19% slower than the corresponding
COMP configuration. The results show a significant overall loss of performance when
constraints are dropped during capacity analysis. Therefore, the experimental results indicate that
it is important to consider as many constraints as possible during the Analyze phase.

6.2 Focus: Effects of bottleneck focusing

Any <SIMP, RAND, ?x> entry is substantially worse than the corresponding entry in <COMP,
BTL, ?x> and <SIMP, BTL, ?x>, both in terms of number of problem solved (11.1 less
problems than COMP and 10.3 less than SIMP) and processing time (average slowdown of
215.11% against COMP and 174.42% against SIMP). All things remaining equal, there is a
substantial advantage in concentrating on the points that CPS characterizes as bottlenecks.
Although, beyond the qualitative description, we lack a deep understanding of what a bottleneck
point really represents, it is apparent that bottlenecks are interesting focusing points and the
capacity analysis is able to find them. This result is independent from the number of constraints
dropped during the Analyze step. Therefore, the experimental results indicate that it is important
to concentrate problem solving effort on bottleneck areas.

6.3 Decide: Effects of different decision granularities

The number of problems solved increase slightly when going from <COMP, BTL, BIP> to
<COMP, BTL, MS>. However, this advantage is mostly due to a single problem that MS can
solve while BIP cannot. If we compare the processing times for the two previous configurations,
we see an average slowdown of 181.27% going from BIP to MS. Similar slowdowns can be
detected when comparing the other configurations. This result shows that the costs of low
(micro) scheduling decision granularities is prohibitive in most cases. The adequacy of macro-
granularity decisions might depend on the expected complexity of the problem, falling short as
problem complexity increases. However, in these cases resorting to micro decisions could be
only one of the possible alternatives. A significantly cheaper approach consists of increasing the
accuracy of the capacity analysis by increasing the size of the complete value assignment
sample. For example, in another study {10] <COMP, BTL, BIP> solved consistently all 60
problems using a sample of size N=20 instcad of N=10. Therefore, the experimental results
indicate that it is important to make as many decisions as possible on the basis of the capacity
analysis information.

The comparison between <SIMP, RAND, BIP> and <SIMP, RAND, MS> yields a surprising
result. It is reasonable to expect that a micro decision step would always be more accurate than a
comparable macro decision step. In fact, a macro decision step can always be seen as a sequence
of micro steps. If additional analyze steps were allowed before each of the component micro
steps, some of them might turn out to be unnecessary or even damaging. However, going from
<SIMP, RAND, BIP> to <SIMP, RAND, MS> the number of problems solved does not
increase or remain stable, as one would expect; instead, there is a significant loss of performance
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(4.6 less solutions are found). Following the micro approach in this case is in fact damaging. We
could explain this surprising result if we hypothesize that the utility of the preferences
information used during Conflict Arbitration (i.e., activity demand profiles) is a function of the
selected conflict set. For some conflict sets the preference information might in fact be
misleading, guiding the scheduler toward a failure. Since the RAND focusing method is totally
uninformed, it might select a misleading conflict set during any opportunistic scheduling cycle.
We can assume that RAND has a given probability of selecting a misleading conflict set. The
overall probability of failure, then, increases with the expected number of opportunistic cycles.
Such probability is the sum of the probabilities of failing after x cycles, with x less or equal to the
expected length of a problem solving trace. This substantial degradation is not present in the
bottleneck centered configurations (BTL). This could be an indication that detecting a bottleneck
indeed excludes the selection of misleading conflict sets. The previous discussion is another
strong indication of the strength of bottleneck-centered scheduling. Bottlenecks are indeed a
strong characterization of the overall structure of a scheduling problem.

7 Conclusions

In this paper we have reported an experimental analysis of different configurations of the CPS
procedure. The aim of the analysis is to go beyond a bulk comparison of systems and to identify
important design trade-offs among system components. Understanding these trade-offs is crucial
for the design of more effective scheduling systems. The trade-offs that we identified are
significant for every opportunistic scheduler. The CPS’s components tested in this study have a
direct correspondent in other opportunistic schedulers. Therefore, we believe that our results
have validity for the entire class of opportunistic scheduling systems. Our experimental analysis
answers three fundamental performance questions on the Analyze-Focus-Decide opportunistic
cycle. In the Analyze phase it is important to consider as many constraints as possible among
those contained in an intermediate problem solving state. In the Focus phase, it is extremely
important to concentrate on bottlenecks. In the Decide phase, if we want acceptable overall
performance, we need to make as many scheduling decisions as possible on the basis of a single
analysis step.
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